RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, MARCH 2021

SECOND YEAR [BATCH 2019-22]	
-----------------------------	--

Date : 20/03/2021	COMPUTER SCIENCE [GENERAL]	
Time : 11.00 am – 1.00 pm	Paper : III	Full Marks : 50

An	swer any five questions from the following :	[5×10]		
1.	a) Perform the 2's complement subtraction of 11010-1101			
	b) Using De'Morgans theorem, show that $\overline{(A+B)}\overline{(\overline{A}+\overline{B})} = 0$	[5+5]		
2.	a) Write the difference between primary memory and secondary memory?			
	b) Write down the difference between SRAM and DRAM	[5+5]		
3.	a) Discuss the Von Neuman architecture.			
	b) Discuss the Cache memory organization.	[5+5]		
4.	a) Briefly discuss the Hamming code error detection and correction technique with an example.			
	b) What do you mean by parity in context of error detection?	[5+5]		
5.	a) Design a combinational circuit that compares two 4-bit numbers A and B to check if they are equal. The circuit has one output x, so that $x = 1$ if $A = B$ and $x = 0$ if $A \neq B$.			
	b) A combinational circuit is defined by the following three Boolean functions. Design the cir with a decoder and external gates.	cuit		
	$F_1 = x'y'z' + xz, F_2 = xy'z' + x'y, F_3 = x'y'z + xy$	[5+5]		
6.	a) Simplify the following Boolean function using four-variable map:			
	$F(A, B, C, D) = \sum (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$			
	b) Implement Full-Adder using NOR gates.			
	c) Define "prime implicant" and "essential prime implicant".	[3+5+2]		
7.	a) How Race around condition or limitation of JK flip flop get eliminated?			
	b) How do you convert a JK flip-flop to a T flip-flop?	[5+5]		
8.	a) Design a binary up counter.			
	b) What is counter?	[5+5]		
×				